terça-feira, 14 de setembro de 2010

História do Matemático Arquimedes


                                        Arquimedes — O "Newton" grego

Arquimedes nasceu na cidade de Siracusa no ano 287 a.C., descendente da família real. Embora da época tão remota podemos considerar Arquimedes como um moderno em pesamento. Realmente podemos equipará-lo com o genial físico e matemático inglês Isaac Newton.

Arquimedes não foi só matemático, mas também iventor. Seus inventos eram baseados no que hoje chamamos de máquinas simples — alavancas, roldanas, sarilhos. É famosa a sua afirmação (querendo ressaltar os efeitos de uma alvanca):

"Dai-me um ponto de apoio e eu moverei o mundo".

Arquimedes construiu muitos engenhos de guerra, através dos quais a sua cidade, Siracusa, conseguiu resistir às hostes romanas durante mais de dois anos. Sabe-se que Arquimedes incendiou e destruiu uma esquadra romana, usando espelhos parabólicas. Aida é sua descoberta o "parafuso sem fim", o qual utiliza para elevação da água.

Um problema onde Arquimedes mostrou toda a sua habilidade como matemático foi, sem dúvida, aquele para se calcular a àrea de um círculo de raio R.

Para isso ele usou um raciocínio que só mais tarde (1600 a 1700 d.C.) iria ser utilizado por Newton e Leibniz na invenção do cálculo infinitesimal.

Seja S a área do círculo. Dividimos tal círculo em número muito grande de partes iguais (por meio de triângulos). Obtemos assim um polígono cuja área A é menor que S (área do círculo). Coloquem-se agora tais triângulos sobre uma reta.

O segmento AB tem para medida um número que chamaremos de P. P é o menor que o comprimento de C da circunferência do círculo.

Com esta tira de triângulos podemos formar um "retângulo" de altura R (aproximadamente) e base 1/2P, obtido dobrando-a ao meio (para um número finito de triângulos, temos um paralelogramo).

A área desse "retângulo" é A e é menor que S.

A área de A se aproximará de S quanto maior for o número de divisões. Se o número n de divisões for infinito, a área A coincidirá com S e o comprimento P coincidira com c.

Um outro problema que sempre apaixonou Arquimedes, e que, segundo ele, era "o mais difícil", foi o de encontrar a relação entre o volume do cone, da esfera e do cilindro, um colocado dentro do outro (cone e cilindro equiláteros, inscrito e excrito na esfera)

Uma famosa descoberta de Arquimedes é o conhecido "Princípio de Arquimedes", da hidrostática, que diz:

" Todo corpo imerso em um fluido recebe deste um empuxo vertical (de baixo para cima) em intensidade igual ao volume deslocado do fluido".

Conta a lenda (narrada posteriormente pelo arquiteto romano vitrúvio) que Arquimedes descobriu tal princípio enquanto tomava banho, e que saiu gritando pelas ruas — "Eureka, Eureka! que quer dizer "Achei"!

Nenhum comentário:

Postar um comentário